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ABSTRACT
In this work, we establish a so-called “system–bath entanglement theorem,” for arbitrary systems coupled with Gaussian environments. This
theorem connects the entangled system–bath response functions in the total composite space to those of local systems, as long as the interact-
ing bath spectral densities are given. We validate the theorem with direct evaluation via the exact dissipaton-equation-of-motion approach.
Therefore, this work enables various quantum dissipation theories, which originally describe only the reduced system dynamics, for their
evaluations on the system–bath entanglement properties. Numerical demonstrations are carried out on the Fano interference spectroscopies
of spin–boson systems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134745., s

I. INTRODUCTION

System–bath entanglement plays a crucial role in dynamic and
thermal properties of complex systems. However, most quantum
dissipation theories (QDTs) focus explicitly only on reduced system
density operators. This compromises the capabilities of conventional
QDTs in the evaluation of the Fano resonances1–5 and the correlated
dynamics between chromophores and surface plasmons.6–8 System–
bath entanglements also involve in thermodynamics functions and
thermal transports.

Almost all existing QDTs are based on Gaussian bath
statistics. Exact methods include the Feynman–Vernon influence
functional path integral formalism,9 and its derivative equiva-
lence, the hierarchical-equations-of-motion (HEOM) implementa-
tion.10–13 Approximate methods often refer to quantum master
equations.14–24 These include the Redfield theory and its modifi-
cations,23 polaron-transformed versions,24 and self-consistent Born
approximation improvements.25–29 The simplicity of the Gaussian
environment is rooted at the underlying Gauss–Wick’s thermody-
namics theorem.30–32 The influence of the environment can be com-
pletely described within the linear response theory framework in
the isolated bare-bath subspace. This feature has been exploited in
various QDTs.

In this work, we address a missing ingredient, the so-called
“system–bath entanglement theorem,” for an arbitrary system cou-
pled with the Gaussian environment. As usual, the total system-plus-
bath composite Hamiltonian reads

HT = HS + hB + HSB ≡ HS + hB +∑
a
Q̂aF̂a. (1)

The system Hamiltonian HS and dissipative modes {Q̂a} are arbi-
trary. In the above equation, we denote the bath Hamiltonian in the
lower case for the Gaussian environment scenario. This requires not
only hB be harmonic but also the hybrid bath modes {F̂a} be linear.
That is,

hB =
1
2∑j

ωj(p̂2
j + x̂2

j ) and F̂a = ∑
j
cajx̂j. (2)

These microscopic expressions, with dimensionless coordinates {x̂j}
and momentums {p̂j}, will be used explicitly later in Sec. II A.
Throughout the paper, we set ̵h = 1 and β = 1/(kBT), with kB as the
Boltzmann constant and T the temperature.

It is worth noting that an open quantum system is subject
to dephasing, energy relaxation, and transport. These irreducible
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processes are beyond the total composite Hamiltonian description.
Additional information, such as temperature T and the interacting
bath statistics, would be needed.30–32 In fact, the total composite
Hamiltonian, HT of Eq. (1), constitutes a “closed system” in the
thermodynamics nomenclature, which is in thermal contact with
surroundings at a given temperature T. The resultant thermal equi-
librium is given by the total system-and-bath composite density
operator, ρeq

T (T) = e−βHT
/ZT, with ZT ≡ Tr e−βHT being the ther-

modynamics partition functions. One typical example is a total
composite solution system in chemistry, where HS and hB stand
for the solute particle and solvent environment, respectively, and
HSB for the coupling between them. Apparently, physically rele-
vant and directly measurable quantities such as correlation and
response functions are all concerned with the total system-plus-bath
composite space.

The simplicity of the Gaussian environment, Eq. (2), is that
its influence on the reduced system can be completely described
with the linear response theory in the bare-bath subspace.30–32

The fundamental quantities here are the interacting bath response
functions,

ϕab(t − τ) ≡ i⟨[F̂
B
a (t), F̂

B
b (τ)]⟩B, (3)

where F̂B
a (t) ≡ eihBtF̂B

a e−ihBt and ⟨( ⋅ )⟩B ≡ trB[( ⋅ )ρ0
B(T)] with

ρ0
B(T) ≡ e−βhB

/trB(e−βhB
). These are just uncorrelated bare-bath

quantities, as if HSB = 0. The interacting bath spectral density
functions are30–32

Jab(ω) =
1
2i ∫

∞

−∞
dt eiωtϕab(t), (4)

which are often given through models in various QDTs.11,30–35 How-
ever, most of these theories focus only on the reduced system
dynamics and evaluate expectation values and correlation/response
functions of various system operators {ÔS}.

As mentioned earlier, the total composite Hamiltonian HT of
Eq. (1) constitutes a closed system in thermodynamics. It is impor-
tant to include the system–bath entanglement dynamics arising from
HSB = ∑a Q̂aF̂a, the last term in Eq. (1), into explicit considera-
tion. In fact, HSB is related to the system–bath hybridization free-
energy change.36 It would require the response/correlation functions
between system operators {Q̂a} and the hybrid bath modes {F̂a} in
the total system-and-bath composite space.

The system–bath entanglement theorem to be established in
this work relates the i⟨[Q̂a(t), F̂b(0)]⟩ and i⟨[F̂a(t), F̂b(0)]⟩ types
of response functions to those of local system i⟨[Q̂a(t), Q̂b(0)]⟩.
Here, Ô(t) ≡ eiHTtÔe−iHTt and ⟨( ⋅ )⟩ ≡ Tr[( ⋅ )ρeq

T (T)] are
defined in the total system-plus-bath composite space. Apparently,
i⟨[F̂a(t), F̂b(0)]⟩ ≠ ϕab(t) of Eq. (3). The latter is the fictitious
uncorrelated bare-bath subspace property, which will serve as the
bridge to the aforementioned relations. The conventional QDTs,
such as the HEOM formalism,10–13 are capable of evaluating the local
system properties. This work would naturally enable their evalua-
tions on those entanglement response/correlation functions between
the local system and the non-local environment. These are all the
ingredients in Fano interference spectroscopies.1–3,37,38

It is worth noting that we will establish the system–bath
entanglement theorem in the non-equilibrium steady-state scenario.

Therefore, this work would be closely related to plasmon spectro-
scopies dressed with strong plasmonic fields.6–8 Other methods such
as the nonequilibrium Green’s function technique would also be
enabled for the aforementioned system–bath entanglement proper-
ties. Moreover, one may exploit the system–bath entanglement the-
orem to bridge between all-atom simulations and implicit Gaussian
solvent environment models.

This paper is organized as follows: We establish the system–
bath entanglement theorem in Sec. II and numerically demonstrate
it in Sec. III. Validations are carried out with respect to direct
evaluation via the exact dissipaton-equation-of-motion (DEOM)
approach.39,40 Fano interference spectroscopies are evaluated on
spin–boson systems. We conclude this work in Sec. IV.

II. SYSTEM–BATH ENTANGLEMENT THEOREM
A. Langevin equation for solvation dynamics

Consider the quantum Langevin equation for the hybrid bath
dynamics, as implied in the total system-and-bath composite Hamil-
tonian, HT, of Eq. (1) with Eq. (2). Let Ô(t) ≡ eiHTtÔe−iHTt . We
obtain

¨̂xj(t) = −ω2
j x̂j(t) − ωj∑

a
cajQ̂a(t). (5)

Its formal solution is

x̂j(t) = x̂j(0) cos(ωjt) + p̂j(0) sin(ωjt)

− ∑

a
caj ∫

t

0
dτ sin[ωj(t − τ)]Q̂a(τ). (6)

It, together with the second identity of Eq. (2), leads to

F̂a(t) = F̂B
a (t) −∑

b
∫

t

0
dτ ϕab(t − τ)Q̂b(τ), (7)

with the bare-bath random force operator, F̂B
a (t) ≡ eihBtF̂B

a e−ihBt , that
also involves in ϕab(t) of Eq. (3), the expression,

F̂B
a (t) = ∑

j
caj[x̂j(0) cos(ωjt) + p̂j(0) sin(ωjt)]. (8)

It is easy to obtain

i[F̂B
a (t), F̂b(0)] = i[F̂

B
a (t), F̂

B
b (0)] = ϕab(t). (9)

This commutator itself is a c-number and equals to the bare-bath
response function, Eq. (3).

Equation (7) describes the Langevin dynamics for the hybridiz-
ing bath modes. It differs from traditional Langevin equations which
focus on reduced systems. However this serves as the starting point
to the following establishment of system–bath entanglement theo-
rem. Let χAB(t−τ) ≡ i⟨[Â(t), B̂(τ)]⟩ be the response function in the
total composite space. As inferred from Eq. (8), [F̂B

a (t), ÔS] = 0 for
an arbitrary system operator ÔS. Consequently, Eq. (7) results in

⟨[F̂a(t), ÔS(0)]⟩ = −∑
b
∫

t

0
dτ ϕab(t − τ)⟨[Q̂b(τ), ÔS(0)]⟩. (10)
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This expresses the non-local response as the convolution between
the bare-bath and the local-system properties.

B. System–bath entanglement theorem
In relation to the system-and-bath entanglement dynamics

underlying the hybridization system and bath modes, {Q̂a} and
{F̂a}, we denote the following response functions in the total com-
posite space,

χSS
ab(t) ≡ i⟨[Q̂a(t), Q̂b(0)]⟩,

χSB
ab (t) ≡ i⟨[Q̂a(t), F̂b(0)]⟩,

χBS
ab (t) ≡ i⟨[F̂a(t), Q̂b(0)]⟩,

χBB
ab (t) ≡ i⟨[F̂a(t), F̂b(0)]⟩.

(11)

The involving operators all arise from HSB = ∑a Q̂aF̂a, with spec-
ifying {Q̂a} and {F̂a} being the operators in the system and bath
subspaces, respectively. Equation (7) gives rise to

χBS
ab (t) = −∑

b′
∫

t

0
dτ ϕab′(t − τ)χ

SS
b′b(τ). (12)

By χSB
ba (t) = −χ

BS
ab (−t), it leads to further

χSB
ba (t) = −∑

b′
∫

t

0
dτ ϕb′a(t − τ)χ

SS
bb′(τ), (13)

obtained via changing the integral variable with τ′ = −τ, followed by
using the antisymmetric relation for both response functions in the
integrand. Moreover, Eq. (7) also gives rise to

χBB
ab (t) = ϕab(t) −∑

b′
∫

t

0
dτ ϕab′(t − τ)χ

SB
b′b(τ). (14)

In terms of the susceptibility or frequency resolution, ̃f (ω)
= ∫

∞
0 dt eiωtf (t), Eqs. (12)–(14) read

χ̃ BS
ab (ω) = −∑

b′
ϕ̃ab′(ω)̃χ

SS
b′b(ω),

χ̃ SB
ba (ω) = −∑

b′
χ̃ SS
bb′(ω)ϕ̃b′a(ω),

(15)

and

χ̃ BB
ab (ω) = ϕ̃ab(ω) +∑

a′b′
ϕ̃aa′(ω)̃χ SS

a′b′(ω)ϕ̃b′b(ω). (16)

Let χ̃BS
(ω) ≡ {χ̃ BS

ab (ω)} be a matrix, and similar for others, so that
one can recast Eqs. (15) and (16) as

χ̃BS
(ω) = −ϕ̃(ω)χ̃SS

(ω), χ̃SB
(ω) = −χ̃SS

(ω)ϕ̃(ω) (17)

and

χ̃BB
(ω) = ϕ̃(ω) + ϕ̃(ω)χ̃SS

(ω)ϕ̃(ω). (18)

We refer these identities as the system–bath entanglement theorem
that goes with the Gaussian bath model. They relate the nonlocal

properties, χ̃BS
(ω), χ̃SB

(ω), and χ̃BB
(ω), with the local system χ̃SS

(ω)
and the bare bath ϕ̃(ω). Define the overall system–bath entangle-
ment susceptibility,

χSB(ω) ≡ ∑
a
χ̃SB
aa (ω) = tr̃χSB

(ω),

χBS(ω) ≡ ∑
a
χ̃BS
aa (ω) = tr̃χBS

(ω).
(19)

From Eq. (17), we immediately have

χSB(ω) = χBS(ω). (20)

This describes the reciprocal relation of the overall system–bath
entanglement susceptibility.

It is worth emphasizing that the ensemble averages under-
lying all response functions in this work are concerned with the
steady-state scenario. In other words, the established theorem, from
Eqs. (10) to (20), is for arbitrary systems coupled with Gaussian
steady-state environments.

It is also noticed that in general, the frequency resolution
can be expressed as χ̃AB(ω) = χ̃(+)AB (ω) + ĩχ(−)AB (ω), with χ̃(±)AB (ω)
= [̃χ(±)BA (ω)]

∗ being the Hermite/anti-Hermite matrix component,
respectively. Here, Â and B̂ are both Hermitian operators. The anti-
Hermite component, χ̃(−)AB (ω), also refers to the spectral density.
In the thermal equilibrium scenario, it is related to the correlation
function via the fluctuation–dissipation theorem.30–32

III. NUMERICAL DEMONSTRATIONS
A. Fano profile in a spin–boson model

For numerical demonstrations, we focus on a single-dissipative
mode spin–boson model and evaluate the Fano interference spec-
troscopy. We will see that the system–bath entanglement theorem-
based indirect evaluations perfectly agree with the results of direct
approach.37

The total system-and-bath composite model Hamiltonian, in
the presence of an external field E(t), assumes

HT(t) =
Ω
2
σ̂z + hB + σ̂xF̂ − μ̂TE(t), (21)

where

μ̂T = μSσ̂x + νBF̂. (22)

The first term, μ̂S = μSσ̂x, represents the transition dipole of the
two-level system (or solute molecule), which itself has no permanent
dipole. The second term in Eq. (22) describes the external light field
E(t)-induced bath (solvent) environment polarization. Physically,
this would correspond to the scenario where an individual solvent
molecule has low polarity but with random orientations. Thus, the
bulk of the solvent is isotropic around the nonpolar solute molecule.
The external light field, assumed to be linear polarized, breaks the
original isotropic symmetry and induces the solvent polarization.
On the other hand, due to the form of system–bath coupling in Eq.
(21), the transition dipole of the solute system could also induce the
polarized solvation coordinate F̂.

J. Chem. Phys. 152, 034102 (2020); doi: 10.1063/1.5134745 152, 034102-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Nevertheless, for the main purpose of the present work, we
set the bath polarization, the second term in Eq. (22), in the form
of μ̂B = νBF̂. The total composite dipole susceptibility is then
given by

Ξ(ω) ≡ i∫
∞

0
dt eiωt⟨[μ̂T(t), μ̂T(0)]⟩

= μ2
SχSS(ω) + 2μSνBχSB(ω) + ν2

BχBB(ω), (23)

with [cf. Eqs. (11) and (20)]

χSS(ω) ≡ i∫
∞

0
dt eiωt⟨[σ̂x(t), σ̂x(0)]⟩,

χSB(ω) ≡ i∫
∞

0
dt eiωt⟨[σ̂x(t), F̂(0)]⟩,

χBB(ω) ≡ i∫
∞

0
dt eiωt⟨[F̂(t), F̂(0)]⟩.

(24)

The system–bath entanglement theorem, Eqs. (17) and (18), lead to
Eq. (23) and further the expression,

Ξ(ω) = ν2
Bϕ̃(ω) + [μS − νBϕ̃(ω)]2χSS(ω). (25)

To proceed, we denote

ϕr(ω) ≡ Re ϕ̃(ω), ϕi(ω) ≡ Im ϕ̃(ω),
q(ω) ≡ μS − νBϕr(ω).

(26)

Further,

z(ω) ≡
χSS(ω)
∣χSS(ω)∣2

≡ zr(ω) + izi(ω). (27)

Here, zr(ω) ≡ Re z(ω) and zi(ω) ≡ Im z(ω). Some simple algebra on
Eq. (25) leads to the expressions,

ReΞ(ω)
∣χSS(ω)∣2

=
ν2

Bϕr(ω)
∣χSS(ω)∣2

+ 2νBϕi(ω)q(ω)zi(ω)

+ [q2
(ω) − ν2

Bϕ
2
i (ω)]zr(ω) (28)

and

ImΞ(ω)
∣χSS(ω)∣2

= [zi(ω) − ϕi(ω)][q2
(ω) + ν2

Bϕi(ω)zi(ω)]

+ ϕi(ω)[q(ω) − νBzr(ω)]2. (29)

In fact, z(ω) of Eq. (27) is related to the self-energy Σ(ω) in

χSS(ω) =
Ω

Ω2
− ω2

−ΩΣ(ω)
, (30)

via
ReΣ(ω) ≡ [Ω2

− ω2
−Ωzr(ω)]/Ω,

ImΣ(ω) ≡ zi(ω).
(31)

Note that the boson–boson model goes with Σ(ω) = ϕ̃(ω).30–32

However, for the spin–boson model, the self-energy needs to be
evaluated via χSS(ω) from certain QDT methods.

Figure 1 depicts χSS(ω) (upper panel) and the associated self-
energy Σ(ω) (lower panel), at a low temperature (βΩ = 10; black)

FIG. 1. Real (dash) and imaginary (solid) parts of χSS(ω) (upper panel) and Σ(ω)
(lower panel), at a low temperature (βΩ = 10; black) and a high temperature (βΩ
= 2; red). Also depicted is Im ϕ̃(ω) (thin-solid) for comparison. The three solid
curves in the lower panel are timed with 10. The asymptotic behavior of Re Σ(ω) to
infinity is found to be quadratic. Drude spectral bath model ϕ̃(ω) = 2λγ/(γ− iω)
is adopted with the parameters chosen as λ = 0.05 Ω and γ = 0.5 Ω.

and a high temperature (βΩ = 2; red). Here, Σ(ω) is obtained via
Eq. (30) from χSS(ω). The latter is evaluated via the exact DEOM
approach,39,40 which is equivalent to the HEOM method,10–13 in the
absence of bath polarization. Physically, Im χSS(ω) and Re χSS(ω)
are related to the reduced system linear spectrum and dispersion,
respectively, in the absence of bath polarization (νB = 0). As antici-
pated, the peak is relatively sharp and strong in the low-temperature
regime. In the lower panel, the asymptotic behavior of ReΣ(ω) is
found to be quadratic in the large ω regime. This is also the behavior
of zr(ω), cf. Eq. (31). As mentioned earlier, the boson–boson model
goes with Σ(ω) = ϕ̃(ω). We do observe that ImΣ(ω) ≈ ϕi(ω), as
anticipated for the low temperature case studied here; cf. the black
vs thin-blue curves in the lower panel.

Figure 2 exhibits the Fano interference spectral lineshape,
ImΞ(ω), with different values of relative bath dipole strength μB/μS,
where μB ≡ 2λνB. It is noticed that the dipole ratio can be either posi-
tive or negative. The plus and minus signs in the figure represent the
two special cases where the bath dipole is parallel and anti-parallel
to the system one, respectively. As mentioned above, the differ-
ences between Im Σ(ω) and ϕi(ω) become smaller as the temperature
decreases. This would lead to more similarities of Fano interference
patterns between the spin–boson and boson–boson cases,37,38 cf. Eq.
(29). All results of Ξ(ω) here are evaluated via Eq. (25) from χSS(ω)
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FIG. 2. Response spectra, Im Ξ(ω) [cf. Eq. (25)], for the high temperature case of
Fig. 1. The bath dipole μB ≡ 2λνB is chosen as μB/μS =∞, ±5, ±2, ±1, 0. The
red and black curves correspond to the + and − signs, respectively.

and ϕ̃(ω) ≡ ϕr(ω)+iϕi(ω), which have been confirmed to be consis-
tent with those from the direct DEOM evaluations on Eq. (23).37,38

Thus, the system–bath entanglement theorem [Eqs. (17) and (18)] is
also numerically verified.

IV. SUMMARY
In this work, we propose the system–bath entanglement theo-

rem, Eqs. (17) and (18), for arbitrary systems coupled with Gaussian
environments. This theorem expresses the entangled system–bath
response functions in the total composite space with those of local
system, as long as the interacting bath response functions {ϕab(t)}
of Eq. (3) are given. This is the general case as the quantum dissi-
pation formulations are concerned with. The captioned theorem is
established on basis of the convolution relation, Eq. (10), between
the bare-bath and the local-system responses for non-local system–
bath properties, obtained by revisiting the Langevin dynamics for
the hybridizing bath modes, Eq. (7). This theorem enables various
quantum dissipation theories, which originally only deal with the
reduced system dynamics, to evaluate system–bath entanglement
properties.

To “visualize” the theorem, we evaluate the Fano interference
spectra of spin–boson systems via both the direct DEOM approach
on Eq. (23) and the indirect entanglement-theorem approach on
Eq. (25). We obtain full consistency between the results from these
two approaches. The Fano analysis made here, Eqs. (22)–(31),
could be readily extended to more complex systems. Note that
the system–bath entanglement theorem here is established in the
non-equilibrium steady-state scenario. Therefore, it is anticipated
to be closely related to plasmon spectroscopies dressed with strong

plasmonic fields. Moreover, other methods such as the non-
equilibrium Green’s function technique would also be readily
exploited for system–bath entanglement properties.
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