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In this work, we extend the recently established system–bath entanglement theorem (SBET) [J.
Chem. Phys. 152, 034102 (2020)] to the nonequilibrium scenario, in which an arbitrary system
couples to multiple Gaussian baths environments at different temperatures. While the existing SBET
connects the entangled system–bath response functions to those of local systems, the extended theory
is concerned with the nonequilibrium steady–state quantum transport current through molecular
junctions. The new theory is established on the basis of the generalized Langevin equation, with a
close relation to nonequilibrium thermodynamics in the quantum regime.

I. INTRODUCTION

Quantum transport of heat and particles has attracted
much attention in the past years. On one hand, it is close-
ly related to the fundamental physics such as nonequilib-
rium thermodynamics in the quantum regime. On the
other hand, it also plays important roles in such as en-
ergy and quantum information applications. Theoretical
studies have been mainly carried out in terms of nonequi-
librium Green’s function (NEGF) methods.

In this work, we exploit the well–established system–
bath entanglement theorem (SBET),1,2 with extension to
nonequilibrium transport scenario. Adopted here is the
Gauss–Wick’s environment ansatz3,4 that is commonly
adopted in various quantum dissipation theories. These
include the formally exact Feynman–Vernon influence
functional theory,5 and its derivative–equivalence the hi-
erarchical equations of motion (HEOM) formalism.6–13

While the existing SBET deals with for response func-
tions only,1,2 the extended theory is concerned with the
nonequilibrium steady–state quantum transport current
through molecular junctions. In this context, the ex-
tended SBET provides an alternative approach to the
NEGF formalism. It is worth noting that the new theory
is established on the basis of the generalized Langevin
equation, which can readily support the evaluation on
entangled system–bath correlation functions, which are
closely related to nonequilibrium thermodynamics in the
quantum regime. The convention fluctuation–dissipation
theorem (FDT), which relates correlation functions and
response functions, is only applicable to the equilibri-
um scenario. There are no general relations between the
nonequilibrium correlation functions and response func-
tions. It would be anticipated that the present Langevin
equation based method be a viable approach toward such
as fluctuation theorem far from equilibrium in the quan-
tum regime. For clarity, we focus on the quantum heat
transport formalism. The extension to electron current
transport would be straightforward on the basis of the
fermionic SBET.2

The remainder of this paper is organized as follows.
In Sec. II, we present the well–established SBET for the

response functions,1 with extension to the nonequilibri-
um transport scenario. In Sec. III, we construct a novel
SBET, on the basis of a generalized Langevin equation,
which readily leads to NEGF formalism for the quantum
heat transport current. We conclude this work to the end
of Sec. III.

II. EXTENDED SYSTEM–BATH
ENTANGLEMENT THEOREM

A. Langevin equation for hybrid bath dynamics

System–bath entanglement plays a crucial role in dy-
namic and thermal properties of complex systems. This
is concerned with a currently active topic in quantum
mechanics of open systems. Recently, we had construct-
ed the SBET.1,2 This theorem comprises exact relation-
s between the entangled system–bath response functions
and those of local anharmonic systems. Applications had
been demonstrated with Fano interference spectroscopy.1

The SBET had also been exploited in the establishment
of the thermodynamic free–energy spectrum theory.2

To extend this theory to the nonequilibrium scenario,
we should include multiple bath reservoirs with different
temperatures, so that heat transport is anticipated. The
total system–and–bath composite Hamiltonian reads

HT = HS + hB +HSB = HS +
∑
α

hα +
∑
αu

Q̂uF̂αu. (1)

The system Hamiltonian HS and dissipative modes {Q̂u}
are arbitrary. The α-reservoir bath Hamiltonian and the
hybrid bath modes are modelled with

hα =
1

2

∑
j

ωαj(p̂
2
αj + x̂2αj) and F̂αu =

∑
j

cαuj x̂αj , (2)

respectively, which together constitute the so–called
Gauss–Wick’s environment.3,4 The simplicity arises from
the fact that the interacting bath commutators are all
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c–variables; i.e.,

φαuv(t) ≡ i[F̂B

u (t), F̂B

v (0)] =
∑
j

cαujcαvj sin(ωαit) (3)

where F̂B
αu(t) ≡ eihBtF̂αue

−ihBt = eihαtF̂αue
−ihαt.

Throughout the paper we set ~ = 1 and βα = 1/(kBTα),
with kB being the Boltzmann constant and Tα the α–
reservoir temperature.

Denote also Ô(t) ≡ eiHTtÔe−iHTt, with noticing that

F̂αu(t) 6= F̂B
αu(t). The former is defined via the total

system–and–bath composite space, whereas the latter is
a bare bath subspace property. It is easy to obtain1

F̂αu(t) = F̂B

αu(t)−
∑
v

∫ t

t0

dτ φαuv(t− τ)Q̂v(τ). (4)

Note that φαuv(t), Eq. (3), can be recast as

φαuv(t) = i〈[F̂B

αu(t), F̂B

αv(0)]〉α, (5)

with 〈( · )〉α ≡ trB[( · )e−βαhα ]/trBe
−βαhα . The hybridiza-

tion bath spectral density is given by12,14

Jαuv(ω) ≡ 1

2

∫ ∞
−∞

dt eiωt〈[F̂B

αu(t), F̂B

αv(0)]〉α. (6)

Its microscopic equivalence reads [cf. Eq. (2)]

Jαuv(ω) =
π

2

∑
j

cαujcαvj [δ(ω − ωαj)− δ(ω + ωαj)]. (7)

Evidently, Jαuv(ω) = Jαvu(ω) = −Jαuv(−ω).
It is worth noting that the Langevin equation (4), to-

gether with the property of Eq. (3), will give rise to some
interesting relations between the entangled system–bath
properties and the local system ones, as bridged with the
bare–bath φαuv(t) or Jαuv(ω).

B. The system–bath entanglement theorem for
response functions and expectation values

The SBET is a type of input–output formalism, in
which the local system properties, such as

χSS

uv(t) ≡ i〈[Q̂u(t), Q̂v(0)]〉 (8)

are the input functions, whereas the nonlocal correspon-
dences,

χSα
uv(t) ≡ i〈[Q̂u(t), F̂αv(0)]〉
χαS

uv(t) ≡ i〈[F̂αu(t), Q̂v(0)]〉
(9)

and

χαα
′

uv (t) ≡ i〈[F̂αu(t), F̂α′v(0)]〉 (10)

are the output functions. Here,

χAB(t− τ) ≡ i〈[Â(t), B̂(τ)]〉 (11)

are defined in the total composite space, at nonequilibri-
um steady–state scenario. It is easily to verify that the
established SBET does include the general nonequilibri-
um scenario.1 The final results, in terms of the matrices,
are

χαS(t) = −
∫ t

0

dτ φα(t− τ)χSS(τ),

χSα(t) = −
∫ t

0

dτ χSS(τ)φα(t− τ),

(12)

and

χαα
′
(t) =

∫ t

0

dτ

∫ τ

0

dτ ′ φα(t− τ)χSS(τ ′)φα
′
(τ − τ ′)

+ δαα′φα(t). (13)

In the frequency domain, f̃(ω) =
∫∞
0

dt eiωtf(t), the
above expressions read

χ̃αS(ω) = −φ̃α(ω)χ̃SS(ω),

χ̃Sα(ω) = −χ̃SS(ω)φ̃α(ω),
(14)

and

χ̃αα
′
(ω) = φ̃α(ω)χ̃SS(ω)φ̃α

′
(ω) + δαα′φ̃α(ω). (15)

Moreover, Eq. (4) will also give rise to the expectation
values the following input–output relations,2

〈F̂αu〉 = −
∑
v

ηαuv〈Q̂v〉, (16)

where

ηαuv ≡
∫ ∞
0

dt φαuv(t). (17)

III. ONSET OF HEAT CURRENT

A. Heat current

Let us start with the heat current transferring from the
specified α–reservoir to the central system. The related
current operator would read [cf. Eq. (1) with Eq. (2)]

Ĵα ≡ −
dhα
dt

= −i[HT, hα] =
∑
u

Q̂u
˙̂
Fαu. (18)

It is noticed there is another convention of heat current
operator definition that engages the hybrid bath modes
of F̂αu only.15–17 Others are just linear combinations of
above two definitions. The existing dissipaton equation
of motion theory can be exploited to the direct evaluation
on the transport current and the noise spectrum.18–20
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The quantity of interest in this section is

Jα ≡ 〈Ĵα〉 =
∑
u

〈Q̂u ˙̂
Fαu〉. (19)

The direct evaluation can be carried out by exploiting
the established dissipaton equation of motion (DEOM)
theory.20 In the following, we will establish the extended
SBET for the indirect evaluation of Eq. (19). The new
theory can be numerically validated with respect to the
aforementioned direct evaluations; See Sec. III C.

B. The extended system–bath entanglement theory

It is noticed that the transport current consists of ab-
sorptive (ω > 0) and emissive (ω < 0) components. In
this contact, we decompose the hybrid bath operator,
F̂αu in Eq. (2) as

F̂αu =
∑

σ=+,−
F̂σαu. (20)

Mathematically, F̂±αu comprises the linear combination-
s of the creation/annihilation operators associated with
the effective bath modes in the canonical ensembles.21 In
parallel, Eq. (4) is decomposed into its components,

F̂σαu(t) = F̂B;σ
αu (t)−

∑
v

∫ t

t0

dτ φα;σuv (t− τ)Q̂v(τ), (21)

The involving φα;σuv (t) satisfies not only

φα;+uv (t) + φα;−uv (t) = φαuv(t), (22a)

but also

φα;+uv (t)− φα;−uv (t)

=
2

iπ

∫ ∞
0

dω cos(ωt) coth(βαω/2)Juv(ω), (22b)

for the required canonical ensemble properties.
To compute the heat current, Eq. (19), with Eq. (21),

we have

˙̂
Fσαu(t) =

˙̂
FB;σ
αu (t)−

∑
v

∫ t

t0

dτ φ̇α;σuv (t− τ)Q̂v(τ)

−
∑
v

φα;σuv (0)Q̂v(t). (23)

Moreover, the identities F̂+
αu = (F̂−αu)† and [F̂σαu, Q̂v] = 0

result in

〈Q̂u ˙̂
Fαu〉 =

∑
σ=+,−

〈 ˙̂
F+
αuQ̂u〉 = 〈 ˙̂

F+
αuQ̂u〉+ c.c. (24)

Now, it is readily to obtain

〈Q̂u ˙̂
Fαu〉 = −2Re

∑
v

∫ ∞
0

dτ φ̇α;+uv (τ)〈Q̂v(0)Q̂u(τ)〉. (25)

The involving φ̇α;+uv (τ) is determined via Eq. (22). Simple
algebra then gives rise to the transport current the final
result,

Jα =
2

π

∑
uv

∫ ∞
−∞

dω
ω

eβαω − 1
Jαuv(ω)Cvu(ω), (26)

where

Cvu(ω) ≡ 1

2

∫ ∞
−∞

dt eiωt〈Q̂v(t)Q̂u(0)〉. (27)

It is easy to show that Eq. (26) is identical to the Meir–
Wingreen’s NEGF formalism.22

C. Numerical validations and concluding remarks

For illustrations, consider the total composite Hamil-
tonian, HT of Eq. (1), with

HS = V (|1〉〈2|+ |2〉〈1|), (28)

hB = hL + hR and

HSB =
∑
u=1,2

|u〉〈u|(F̂Lu + F̂Ru). (29)

Evidently, Q̂u = |u〉〈u|. Adopt further

φ̃αuv(ω) = δuv
ηαuΩ2

Ω2 − ω2 − iωζ
. (30)

Set ηL1 = ηR2 = 0.2V , ηR1 = ηL2 = 0.4V , Ω = 2V , ζ = 10V
and kBTL = 5V . Table I reports the results of numerical
validation at the specified values of TR/TL. As men-
tioned after Eq. (19), the direct evaluation refers to the
DEOM results, whereas the indirect ones arise from E-
q. (26), through the local system spectra, Eq. (27). The
extended SBET, Eq. (26), does hold for arbitary systems
in the nonequilibrium steady–state scenario.

TR/TL 0.5 1 1.5 2

Direct 0.01484 0 −0.008757 −0.01435

Indirect 0.01487 0 −0.008773 −0.01435

TABLE I. Direct versus indirect approach to the heat current
JL, as expressed in Eq. (26).

In summary, we revisit the NEGF formalism via the
generalized Langevin equation (4). The present approach
can be readily extended to the entangled system–bath
correlation functions that would be closely related to
nonequilibrium thermodynamics in the quantum regime.
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